Clinical and translational studies of the anti-colorectal cancer activity of the ω-3 polyunsaturated fatty acid eicosapentaenoic acid

Professor Mark Hull
Leeds Institute of Molecular Medicine and St James’s University Hospital, Leeds
The long natural history of colorectal carcinogenesis

adenoma (polyp) adenocarcinoma (cancer)

benign malignant
Colorectal Cancer (CRC) prevention strategies

• Screening
• Surveillance
• Chemoprevention
• Lifestyle/behaviour modification
 – Body weight
 – Diet
 – Alcohol
 – Smoking
The ideal CRC chemoprevention agent

The use of natural or synthetic chemical agents to reverse, suppress, or prevent carcinogenic progression to invasive cancer – Sporn 1976

• Effective
 – Colorectal cancer
 – Other malignancies
 – Other diseases (improved life-expectancy)

• Safe and well tolerated

• Easy to use and acceptable

• Inexpensive
Evidence that ω-3 PUFAs have CRC chemopreventative efficacy

- Epidemiological observations
- Rodent models of colorectal carcinogenesis
- Clinical trials of ω-3 PUFAs
Evidence that dietary ω-3 PUFA intake reduces CRC risk is not convincing

- “Limited, but suggestive, evidence that dietary fish intake reduces CRC risk”
- 35 cohort studies
 - Approx. 50% have reported decreased risk
- >50 case-control studies
- Systematic Review of cohort studies
 - Only 1 of 9 studies demonstrated a significant reduction in CRC risk in the highest ω-3 PUFA intake category

2nd Expert report WCRF/AICR 2007 and WCRF/AICR CUP 2011
JAMA 2006;295:403-15
Pre-clinical models of early stages of colorectal carcinogenesis

- Chemical carcinogenesis
 - Azoxymethane (AOM)
 - Dimethylhydrazine (DMH)
 - End-points
 - Aberrant crypt focus (ACF)
 - Tumour (adenoma/adenocarcinoma)

- \(Apc^{\text{Min}/+}\) mouse model of familial adenomatous polyposis (FAP)
 - Multiple adenomas in SI and colon after loss of second \(Apc\) allele
Pre-clinical evidence that ω-3 PUFAs have CRC chemopreventative efficacy

• Chemical carcinogenesis models (15 rat/2 mouse)
 – 4-20% (v/w) fish oil in chow
 – 20-50% reduction in tumour incidence
 – 30-70% reduction in ACF or tumour multiplicity

• $Apc^{Min/+}$ and $Apc^{\Delta 716}$ mouse models
 – 1-12% (v/w) fish oil in chow
 – 40-80% reduction in adenoma multiplicity

• Usually EPA/DHA mix

• EPA = DHA
 – 6 single ω-3 PUFA studies
 – 1 direct comparison ($Apc^{Min/+}$)

Gut 2011 doi 10.1136/gut.2010.233718
EPA as the free fatty acid reduces intestinal adenoma multiplicity in \(Apc^{Min/+} \) mice

- 99% pure EPA as the free fatty acid (FFA)
- AIN-93G diet with soybean oil
- 12 weeks
- \(n=8 \) each group
Why a discrepancy between the human observational and pre-clinical data?

- Methodological weaknesses in epidemiological studies
 - Subjective dietary measurements
 - Variable definitions of fish intake
- ‘Pharmacological’ treatment dose versus dietary ω-3 PUFA
 - 100 g ‘oily’ fish (salmon or sardines) = 1-2 g ω-3 PUFA
 - 100 g ‘lean’ fish (cod or haddock) = 0.25 g ω-3 PUFA
 - 2 g ω-3 PUFA per day is equivalent to eating 7-10 ‘oily’ fish portions per week
- Rodent models do not reflect human colorectal carcinogenesis
 - The same models have predicted efficacy of other agents eg. coxibs
- Confounding effect of reduced (pro-tumorigenic) ω-6 PUFA intake in rodent models
 - Some reports have controlled for ω-6 PUFA (corn oil) intake and demonstrated ω-3 PUFA efficacy
Human mucosal biomarkers of CRC risk

- No prospectively validated biomarker!

- Epithelial cell proliferation index (PI)
 - Whole crypt microdissection
 - Ki-67 (MIB-1)/PCNA IHC

- Epithelial cell apoptosis index (AI)
 - H&E apoptotic body counting
 - Neo-cytokeratin 18 IHC

- Tissue ω-3 and ω-6 PUFA content by GC-MS
Human biomarker studies of ω-3 PUFA therapy

<table>
<thead>
<tr>
<th>Study (author/year)</th>
<th>Design Patient group</th>
<th>N</th>
<th>ω-3 PUFA daily dose</th>
<th>Treatment Duration</th>
<th>Primary outcome</th>
<th>Mucosal PUFA content</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti 1992</td>
<td>R, DB, PC ‘sporadic’ adenoma</td>
<td>24</td>
<td>7.7 g FO1</td>
<td>12 wk</td>
<td>PI</td>
<td>↑EPA & ↓AA</td>
<td>62% ↓PI</td>
</tr>
<tr>
<td>Bartoli 1993</td>
<td>R, DB, PC ‘sporadic’ adenoma</td>
<td>40</td>
<td>2.5-7.7 g FO1</td>
<td>30 days</td>
<td>PI</td>
<td>Dose dependent ↑EPA/DHA & ↓AA</td>
<td>Dose dependent 40-70% ↓PI</td>
</tr>
<tr>
<td>Bartlam 1993</td>
<td>DB crossover trial Healthy volunteer</td>
<td>12</td>
<td>4.4 g FO2</td>
<td>4wk +4 wk</td>
<td>PI</td>
<td>ω-3 PUFA ↔ ω-6 PUFA ↓ (NS)</td>
<td>16% ↓ PI & 35% ↓ mucosal PGE₂</td>
</tr>
<tr>
<td>Anti 1994</td>
<td>R, DB, PC ‘sporadic’ adenoma</td>
<td>60</td>
<td>2.5-7.7 g FO1</td>
<td>30 days</td>
<td>PI</td>
<td>Dose dependent ↑EPA/DHA & ↓AA</td>
<td>Dose independent 50-70% ↓</td>
</tr>
<tr>
<td>Huang 1996</td>
<td>R, DB, PC Dukes A/B CRC or severely dysplastic polyp</td>
<td>27</td>
<td>7.2 g FO3</td>
<td>6 months</td>
<td>PI</td>
<td>↑EPA/DHA & ↓AA</td>
<td>71% ↓ PI (only in patients with high baseline PI)</td>
</tr>
<tr>
<td>Gee 1999</td>
<td>R, PC, single blind Awaiting CRC surgery</td>
<td>51</td>
<td>2.4 g FO4</td>
<td>7-21 days pre- and 8-12 wk post- surgery</td>
<td>PI</td>
<td>↑EPA/DHA ↑ ω-3 : ω-6 ratio</td>
<td>No effect on PI at surgery or 12wk post-op</td>
</tr>
<tr>
<td>Cheng 2003</td>
<td>R, C, open label Previous CRC/adenoma</td>
<td>41</td>
<td>Dietary advice +/- 500 mg FO5</td>
<td>2 years</td>
<td>PI/AI</td>
<td>Not assessed</td>
<td>PI↔, 50% ↑AI, 50% ↑ Bax, COX2 ↔</td>
</tr>
<tr>
<td>Courtney 2007</td>
<td>R, single blind ‘sporadic’ adenoma</td>
<td>30</td>
<td>EPA 2 g as FFA</td>
<td>3 months</td>
<td>PI/AI</td>
<td>↑EPA/DHA & ↓AA</td>
<td>20% ↓ PI 7x ↑ AI</td>
</tr>
<tr>
<td>West 2009</td>
<td>R, DB, PC ‘sporadic’ adenoma</td>
<td>152</td>
<td>EPA 1 g or2 g as FFA</td>
<td>6 months</td>
<td>PI/AI</td>
<td>↑EPA/DHA & ↓AA</td>
<td>13% ↓ PI 57% ↑ AI (NS)</td>
</tr>
</tbody>
</table>

FO1 = 54% EPA/46% DHA as ethyl esters
FO2 = 48% EPA/44% DHA, as triglycerides
FO3 = 55% EPA/30% DHA/15% other ω-3 PUFAs
FO4 = 58% EPA/42% DHA
FO5 = 20% EPA/80% DHA
Polyp (adenoma) Prevention Trials in CRC chemoprevention research

- Colorectal adenoma number and characteristics (size, ‘advanced’ features) are established as biomarkers of future CRC risk
- Relatively short trials are feasible
 - Sigmoidoscopic/colonoscopic surveillance in FAP
 - Colonoscopic surveillance programmes for ‘sporadic’ neoplasia (3-5 years)
- Efficacy in Polyp Prevention Trials mirrored by long-term (10-15 years) effects on CRC incidence for aspirin
Familial adenomatous polyposis

- Autosomal dominant mutation of the \(APC \) gene
- Initiation of colorectal carcinogenesis after loss of the second \(APC \) allele
- Molecular pathology is identical to ‘sporadic’ colorectal adenomas
- Classical (100s) and attenuated (10-100) phenotypes
- 100% penetrance for CRC by 4-5\(^{th}\) decade
- Surgical options
 - colectomy and ileo-rectal anastomosis (IRA)
 - pan-proctocolectomy
- Endoscopic surveillance of rectal stump needed every 6-12 months after IRA

Endoscopic surveillance of the rectal stump
Trials of ω-3 PUFAs in patients with FAP

- **Japanese case series**
 - n=5
 - Previous colectomy or >30 polyps
 - 2.2 g DHA + 0.6 g EPA for 1-2 years
 - No significant change in polyp number

- **Phase III DBRCT**
 - n=58
 - Previous colectomy and IRA undergoing surveillance
 - EPA-FFA 2 g daily or placebo for 6 months

Gut 2010;59:918-25
Endoscopic Measurements

- Polyp number and diameter in tattooed area
 - comparable photos from DVDs
 - assessed by 2 blinded Endoscopists
 - biopsy forceps as magnification guide

- DVDs reviewed by 5 Endoscopists
 - Independent of photo review
 - Blinded to treatment & viewing order
 - Scored overall global polyp burden as:
 - Better (+1); Same (0); Worse (-1)
 - Mean score calculated
63 FAP patients assessed for eligibility

Excluded (n = 5) Not meeting inclusion criteria

Placebo (n = 29)
Analysed (n = 27)

Randomisation (n = 58)

EPA 2 g daily (n = 29)
Analysed (n = 28)
Subject Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Placebo (n=27)</th>
<th>EPA-FFA (n=28)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at study entry (y)</td>
<td>42.5 (13.8)</td>
<td>39.5 (11.4)</td>
</tr>
<tr>
<td>Male</td>
<td>15 (55.6)</td>
<td>13 (46.4)</td>
</tr>
<tr>
<td>Female</td>
<td>12 (44.4)</td>
<td>15 (53.6)</td>
</tr>
<tr>
<td>Time since colectomy (y)</td>
<td>15.4 (9.3)</td>
<td>15.9 (9.6)</td>
</tr>
<tr>
<td>Length of rectal remnant (cm)</td>
<td>20.6 (4.0)</td>
<td>20.4 (5.7)</td>
</tr>
</tbody>
</table>
Number of Polyps in Focal Area

<table>
<thead>
<tr>
<th></th>
<th>Baseline Mean (SD)</th>
<th>Change 0-6 months Mean [95% CI]</th>
<th>Difference between treatments Mean [95% CI]</th>
<th>P value (ANCOVA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>4.50 (2.63)</td>
<td>0.54 [-1.78; -0.35]</td>
<td>-1.06 [-1.78; -0.35]</td>
<td>0.0046</td>
</tr>
<tr>
<td>EPA-FFA 2g/day</td>
<td>4.13 (2.47)</td>
<td>-0.52 [-1.02; -0.02]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Percentage Change in Number of Polyps

Δ No of polyps (%)

Placebo: 9.7 [-2.6; 22.0]
EPA-FFA: -12.6 [-24.7; -0.6]
Net change: -22.4 [-39.6; -5.1]

P = 0.0122
Percentage Change in Size of Polyps

Δ Total polyp diameter (%)

- **Placebo**
 - 17.3 [-1.7; 36.2]

- **EPA-FFA**
 - -12.6 [-30.6; 5.46]

- **Net change**
 - -29.8 [-56.1; -3.58]

$P = 0.0270$
Change in Global Polyp Burden

Mean score

Better

Worse

Placebo

EPA-FFA

Net change

-0.34 [-0.56; -0.11]

0.09 [-0.14; 0.32]

0.42 [0.10; 0.75]

P = 0.011
Percentage Change in Number of Polyps

Adverse Events

<table>
<thead>
<tr>
<th>Condition</th>
<th>Placebo (n = 29)</th>
<th>EPA-FFA (n = 29)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhoea</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Abdominal distension</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Upper abdominal pain</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Epigastric discomfort</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Nausea</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>
Mucosal PUFA content

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Placebo (n=26)</th>
<th>EPA-FFA (n=26)</th>
<th>Difference EPA-FFA - Pla (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline (SD)</td>
<td>6 months (SD)</td>
<td>Change (95% CI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPA</td>
<td>0.73 (0.72)</td>
<td>1.30 (1.09)</td>
<td>0.54 (-0.06, 1.13)</td>
<td>0.97 (0.89) 2.50 (1.98)</td>
</tr>
<tr>
<td>DPA</td>
<td>0.75 (0.65)</td>
<td>0.76 (0.66)</td>
<td>0.04 (-0.20, 0.28)</td>
<td>0.64 (1.15) 1.17 (0.69)</td>
</tr>
<tr>
<td>DHA</td>
<td>1.39 (0.61)</td>
<td>1.42 (1.05)</td>
<td>-0.11 (-0.46, 0.24)</td>
<td>1.92 (1.30) 1.71 (0.94)</td>
</tr>
<tr>
<td>AA</td>
<td>9.63 (2.18)</td>
<td>9.88 (1.86)</td>
<td>0.61 (-0.10, 1.31)</td>
<td>8.47 (1.68) 8.82 (1.91)</td>
</tr>
</tbody>
</table>

Data are the mean % of the total mucosal fatty acid pool measured by GC-MS

- **Significant 2.6-fold increase in rectal mucosal EPA levels**
- Increase in DPA (but not DHA) levels
- No significant change in AA content
EPA-FFA has chemopreventative efficacy in FAP

• EPA-FFA 2 g daily for 6 months
 – Reduces rectal adenoma number and size
 – Similar magnitude effect as for the selective COX-2 inhibitor celecoxib
 – Is safe and well-tolerated
 – Leads to EPA incorporation into rectal mucosa
 – ? Efficacy against ‘sporadic’ colorectal neoplasia

Gut 2010;59:918-25
seAFOod Polyp Prevention Trial

• Double-blind randomised placebo-controlled trial in English Bowel Cancer Screening Programme

• 2 x 2 factorial design
 – EPA free fatty acid 2 g daily
 – aspirin 300 mg daily

• Intervention for 12 months

• ‘high risk’ patients due for surveillance colonoscopy at 1 year
 – ≥ 5 small polyps
 – ≥ 3 polyps with at least one ≥ 1 cm

• www.seafood-trial.co.uk
seAFOod Polyp Prevention Trial

• 1º endpoint – number of patients with a polyp(s) at one year
 – 768 evaluable patients to detect a minimum 18% decrease in adenoma ‘recurrence’
 – Assuming 15% drop-out this increases to 904 patients
 – Assuming 40% ineligibility (incl aspirin use, need for re-look), we need to identify 1507 ‘high risk’ patients

• 2º endpoints – polyp number, ‘advanced’ lesions, location, AEs

• Exploratory end-points - lipid biomarker and genomic studies
 – Erythrocyte and mucosal EPA, DPA and AA levels by GC-MS
 – Plasma and mucosal ‘lipidomic’ analysis by LC-MS/MS
 • PGE₂, PGE₃, 18R-HEPE, resolvin E1/2
 – Urinary PGE-M by LC-MS/MS
 – COX-2 immunohistochemistry on FFPE polyp tissue
 – Genomic DNA for genotype studies
Mechanisms of anti-cancer activity of EPA

- inhibition of cyclooxygenase (COX) activity
- production of novel anti-inflammatory lipid mediators
 - E-type resolvins (requirement for aspirin?)
- direct fatty acid signalling via GPCRs
 - Stromal macrophage GPR120
- alteration of membrane dynamics and receptor function
 - EGF receptor
- increased cellular oxidative stress leading to apoptosis
- Anti-angiogenesis
- Modulation of host anti-tumour immune surveillance
Cyclooxygenase (COX) isoforms

Arachidonic acid

NSAIDs

COX

PGH₂

PGI₂

TXA₂

stomach and endothelium

kidney and intestine

normal

COX-1

COX-2

pathological e.g. RA joint

growth factors cytokines tumour promoters

PGs

PGEs

PGE₂ is pro-tumorigenic in CRC
COX-dependent mechanisms of action

‘western’ diet/untreated

AA → COX-1 → PGE₂

AA → COX-2 → PGE₂

dietary/therapeutic EPA

EPA → COX-1 → ↓PGE₂

EPA → COX-2 → PGE₃

PGE₃ is a partial agonist at the EP4 receptor

LoVo human CRC cells

EPA-FFA as adjuvant therapy for prevention and/or treatment of CRC liver metastasis (CRCLM)

• An unmet clinical need
• Conflicting data from animal models of CRCLM
• Efficacy and mechanism of action of EPA-FFA in a BALB/c MC-26 mouse CRC cell model
• EPA for Metastasis Treatment (EMT) Study
 – Phase II DBRCT of EPA-FFA 2 g daily prior to liver surgery (NCT01070355)

Gut 2011 doi 10.1136/gut.2010.233718
EPA for Metastasis Treatment (EMT) Study

- Phase II DBRCT
- NCT01070355
- EPA-FFA 2 g daily or placebo prior to liver surgery for CRCLM (2-8 weeks)
- N=88, LPLV Oct 2011
- 1º endpoint – tumour MIB-1 proliferation index
- 2º endpoints
 - Safety & tolerability (AEs)
 - Platelet function studies
 - Apoptosis index, microvessel density
 - Tumour PUFA content
 - Tumour PGE$_2$/PGE$_3$ levels
 - Urinary PGE-M
 - COX-2 expression
 - PBMC activation (NFκB activation, PGE$_2$ production)
Summary

• The ω-3 PUFA EPA has chemopreventative efficacy in animal models and a RCT in FAP patients
• A RCT of EPA-FFA for prevention of ‘sporadic’ colorectal neoplasia in high risk patients is underway
• Mechanistic pre-clinical and human biomarker studies will provide insights into its mechanism(s) of action
• A Phase II RCT of EPA-FFA in CRCLM patients will report in 2012 – test use as adjuvant therapy in CRC patients?