Nutrition and Cancer: What We Know, What We Don’t Know

Walter C. Willett, MD, DrPH

Department of Nutrition
Harvard T. H. Chan School of Public Health

November 16, 2016
Animal Fat and Breast Cancer Mortality

Breast Cancer Deaths / 100,000 pop

Animal Fat Intake (g/day)

Carroll, 1975
Relative Risk of Breast Cancer for 25 gm of Fat per Day

Case-Control

Prospective

*p, Heterogeneity < 0.001

**p, Heterogeneity = 0.24

Study

0.215
Dietary Total Fat and Breast Cancer in Pooling Project of Diet and Cancer
(8 cohorts with 7,329 cases)

Multivariate RR

Quintiles of Total Fat

(Smith-Warner S et al. Int J Cancer, 2001)

1.086
Deattenuated Spearman correlation coefficients (and lower bound of the 95% CI) between diet assessed by FFQ’s, 24-hour recalls, and 1-week diet records and biomarkers of diet (n = 627 U.S. female nurses aged 45-80 years)

De-attenuated r and lower bound of the 95% CI

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Single ASA24</th>
<th>Averaged ASA24</th>
<th>SFFQ2</th>
<th>SFFQ1&2</th>
<th>Single 7DDR</th>
<th>Averaged 7DDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein (% energy)</td>
<td>0.37</td>
<td>0.46</td>
<td>0.54</td>
<td>0.52</td>
<td>0.67</td>
<td>0.59</td>
</tr>
<tr>
<td>Potassium (mg/1,000 kcal)</td>
<td>0.41</td>
<td>0.52</td>
<td>0.49</td>
<td>0.49</td>
<td>0.59</td>
<td>0.64</td>
</tr>
<tr>
<td>Long Chain N-3* (% total fat)</td>
<td>0.23</td>
<td>0.36</td>
<td>0.58</td>
<td>0.53</td>
<td>0.64</td>
<td>0.64</td>
</tr>
<tr>
<td>Beta carotene*</td>
<td>0.24</td>
<td>0.36</td>
<td>0.47</td>
<td>0.50</td>
<td>0.50</td>
<td>0.58</td>
</tr>
</tbody>
</table>

*Subgroups of women who didn’t take supplements for this nutrient (N= 363 for long-chain N-3 fatty acids, and 335 for beta-carotene)

(Yuan C et al. unpublished)
Breast Cancer Incidence in WHI

HR, 0.91 (95% CI, 0.83-1.01)

P=0.09

Prentice RL et al. JAMA 2006; 295(6):629-42
Change in Dietary Fat, HDL, Triglycerides in the WHI

<table>
<thead>
<tr>
<th>Fat Intake (%E)</th>
<th>Baseline</th>
<th>Year 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>38.8%</td>
<td>38.1%</td>
</tr>
<tr>
<td>Intervention</td>
<td>38.8%</td>
<td>29.8%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HDL (mg/dl)</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>56.4</td>
</tr>
<tr>
<td>Intervention</td>
<td>58.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Triglyceride (mg/dl)</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>141.1</td>
</tr>
<tr>
<td>Intervention</td>
<td>138.6</td>
</tr>
</tbody>
</table>

Randomized trial of dietary intervention for breast cancer prevention

Cohort analysis

All invasive breast cancer

HR* = 1.19 (95% CI$^+$: 0.91–1.55)

Cumulative hazard

Year

Intervention

Comparison

(Martin LJ, et al. 2011)
Fat & Postmenopausal Breast Cancer in NHS, 1980-2000 (3537 cases)

RR of Breast Cancer

Cumulative Average Fat Intake (%E)

\(P, \text{ trend test } 0.11 \)

(Kim et al. 2006)
Major takeaways for 2015 DGAC report

- Focus on dietary patterns rather than individual nutrients – one size doesn’t fit all
- **Remove restriction on total fat**: types of fat are more important
- **Retain 10% upper limit on saturated fat**
- **Remove restriction on dietary cholesterol**: eggs (moderate amount) are Okay
- **Consider environment**: reduce red meat for both health & planet
- **Set a 10% calorie upper limit on added sugars**
- **Retain 2300 mg/day sodium limit**, but not 1500 mg/day
- **Coffee consumption** as part of a healthy diet/lifestyle
- **Farm-raised and wild-caught seafood** are equally nutritious
- **Promote “Culture of health”**: Accessible, affordable, and normative
<table>
<thead>
<tr>
<th>Sufficient Evidence</th>
<th>Limited Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colon</td>
<td>Fatal prostate cancer</td>
</tr>
<tr>
<td>Esophagus (Adeno Ca)</td>
<td>Large B-cell lymphoma</td>
</tr>
<tr>
<td>Kidney</td>
<td>Male breast</td>
</tr>
<tr>
<td>Breast (postmenopausal)</td>
<td></td>
</tr>
<tr>
<td>Uterine (corpus)</td>
<td></td>
</tr>
<tr>
<td>Gastric (Cardia)</td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td></td>
</tr>
<tr>
<td>Gall bladder</td>
<td></td>
</tr>
<tr>
<td>Pancreas</td>
<td></td>
</tr>
<tr>
<td>Ovary</td>
<td></td>
</tr>
<tr>
<td>Thyroid</td>
<td></td>
</tr>
<tr>
<td>Multiple myeloma</td>
<td></td>
</tr>
<tr>
<td>Meningioma</td>
<td></td>
</tr>
</tbody>
</table>
BMI and cancer mortality in pooled data from 1.46 million adults

(Berrington de Gonzalez et al. NEJM 2010)
Cardiovascular Disease

P-value, test for trend < 0.001

Cancer
P-value, test for trend = 0.77

Cardiovascular Disease
P-value, test for trend < 0.001

Hsin-Chia Hung, 2004
Intake of fruits and vegetables and risk of total cancer in EPIC cohort

$P_{trend} = < .001$

(Boffeta P et al., 2010)
Vegetable intake and RR of breast cancer by hormone receptor status (19,869 cases in 1 million women)

Relative Risk

P-trend, 0.06
P-trend, <.001

(Jung S et al., JNCI 2013)
Plasma β-carotene and risk of breast cancer in pooled cohorts (ER+ vs ER-)

(Eliassen AH et al. JNCI 2012)
Intakes of fruits and vegetables (per 3 servings/week) and risk of pancreatic cancer in pooled analysis of 14 cohort studies

(Koushik A et al. AJE, 2012)
Number of new colon and rectum cancer cases and deaths per 100,000, from 2008-2013

Cumulative Alcohol Consumption & Risk of Breast Cancer in the NHS, 1980-2004

(P for trend, <0.0001)

(relative risk)

(Chen WY et al. JAMA 2011)
Processed meat and colorectal cancer; cohort studies

Relative risk (95% CI)

Goldbohm 1994: 1.69 (1.10–2.58)
Pietinen 1999: 0.99 (0.79–1.24)
Chao 2005 Men: 1.40 (1.04–1.88)
Chao 2005 Women: 1.14 (0.64–2.05)
Norat 2005: 1.30 (0.93–1.80)
Larsson 2005 Women: 1.13 (0.85–1.51)
Summary estimate: 1.21 (1.04–1.42)
Potential Relationships Needing Further Examination:

- Milk and fatal prostate cancer (+)
- Calcium and colorectal cancer (-)
- Soy and breast and prostate cancer (-)
- Lycopene and prostate cancer (-)
- Vitamin D and colorectal cancer (-)
Western & Prudent Diet and CRC

(24 to 32 years of follow-up in NHS/HPFS, N = 3,209 cases)

(Mehta RS et al., unpublished data)
Greater Height Is Associated with Higher Risk of Breast Cancer

(Van den Brandt et al 2000)

Pooled Analysis of 8 Cohort Studies

![Graph showing incidence rate ratio (IRR) vs. height in cm](image)

FIGURE 1. Nonparametric regression curve for the relation between height and breast cancer, the Pooling Project of Diet and Cancer.
Adolescent Meat Intake and Premenopausal Breast Cancer

NHSII (n=44,231)

P, trend = 0.007

(Farvid MS et al., Int J Cancer 2014)
Premenopausal fiber intake and risk of breast cancer in NHSII (1991-2011)

- Multivariate RRs
- Quintiles (Farvid M et al., preliminary data)

\[P_{\text{trend}} = 0.002 \]
Intake of vegetable fat and RRs for prostate cancer-specific and overall survival among 4577 men with prostate cancer

Relative Risk

Prostate-cancer specific mortality

$P_{\text{trend}} = .06$

Overall mortality

$P_{\text{trend}} = <.001$

(Richman E et al. JAMA Intern Med 2013)
Multivariate RRs of Type 2 Diabetes

A. Cereal-Fiber Intake

B. Ratio of Polyunsaturated-Fat Intake to Saturated-Fat Intake

C. Trans-Fat Intake

D. Glycemic Load

(Hu et al. 2001)
Conclusions: Methodological

- All types of studies have limitations; case-control studies are prone to serious bias
- Current methods to assess diet are sufficient to detect most important associations; specificity among correlated nutrients will always be challenging
- Large randomized trials of diet and cancer incidence may fail due to poor adherence and limited duration
- The best evidence will probably come from replicated cohort studies in combination with short-term trials with intermediate biomarkers
- Integration of genomics, metabolomics, epigenetics and molecular characterization of tumors is likely to be useful in establishing causality
CONCLUSIONS

1. Estimate of 30-35% of cancer due to nutritional factors is still reasonable, but much of this is related to overweight & inactivity.

2. Alcohol consumption does increase risks of breast & other cancers.

3. Low folate intake likely contributes to colon, breast, and possibly other cancers.

4. Considerable evidence supports a role of low intakes of calcium, folate, lycopene, and vitamin D in human cancer.

5. We still have much to learn. Studies of maternal diet, diet during childhood, & long follow-ups will be important.
Relationship of dietary factors with risk of selected individual cancer sites (WCRF/AICR, Willett & McCullough, 2016)

Macronutrients/energy balance

<table>
<thead>
<tr>
<th>Dietary Factor</th>
<th>Colorectum</th>
<th>Breast</th>
<th>Prostate</th>
<th>Lung</th>
<th>Stomach</th>
<th>Esophagus</th>
<th>Pancreas</th>
<th>Liver</th>
<th>Ovary</th>
<th>Endometrium</th>
<th>All cancers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obesity</td>
<td>↑↑</td>
<td>↑↑↑</td>
<td>↑</td>
<td>↑↑</td>
<td>↑↑↑</td>
<td>↑↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Abdominal fatness</td>
<td>↑↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbohydrates/sugars</td>
<td>↑↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycemic Load</td>
<td>↑↑</td>
<td>↑↑↑</td>
<td></td>
<td></td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>↑↑</td>
<td>↑↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nutrients

<table>
<thead>
<tr>
<th>Dietary Factor</th>
<th>Colorectum</th>
<th>Breast</th>
<th>Prostate</th>
<th>Lung</th>
<th>Stomach</th>
<th>Esophagus</th>
<th>Pancreas</th>
<th>Liver</th>
<th>Ovary</th>
<th>Endometrium</th>
<th>All cancers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin D</td>
<td>↓</td>
<td>ᵧ</td>
<td>Non-linear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>↓</td>
<td>ᵧ</td>
<td>↑</td>
<td>↑↑</td>
<td>↑↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folate</td>
<td>↓</td>
<td>ᵧ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiber (foods)</td>
<td>↓↓</td>
<td>↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carotenoids</td>
<td>↓↑</td>
<td>ᵧ</td>
<td>Lycopene</td>
<td>↓</td>
<td>↓</td>
<td>↓(foods)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-carotene supplements</td>
<td>ᵧ</td>
<td>ᵧ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin E supplements</td>
<td>ᵧ</td>
<td>ᵧ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium supplements</td>
<td>ᵧ</td>
<td>ᵧ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin C</td>
<td></td>
</tr>
<tr>
<td>Antioxidant (combin -ation) supplements</td>
<td></td>
</tr>
<tr>
<td>Salt preservation</td>
<td></td>
</tr>
<tr>
<td>Contaminants</td>
<td></td>
<td></td>
<td>arsenic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Foods

<table>
<thead>
<tr>
<th>Dietary Factor</th>
<th>Colorectum</th>
<th>Breast</th>
<th>Prostate</th>
<th>Lung</th>
<th>Stomach</th>
<th>Esophagus</th>
<th>Pancreas</th>
<th>Liver</th>
<th>Ovary</th>
<th>Endometrium</th>
<th>All cancers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruits</td>
<td></td>
</tr>
<tr>
<td>Vegetables</td>
<td>↓↑**</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red meat</td>
<td>↑↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processed meat</td>
<td>↑↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑↑</td>
<td>↑↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other protein sources, fish, poultry, nuts</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Whole grains</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Dairy or milk</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Soy</td>
<td>↓↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑↑</td>
<td>↑↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coffee</td>
<td></td>
</tr>
<tr>
<td>Tea</td>
<td></td>
</tr>
<tr>
<td>Alcohol</td>
<td>↑↑↑</td>
<td>↑↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hazard ratios for breast cancer by quintile of saturated-fat intake according to the FFQ and food diary.

Quintile estimates and smoothed data for every quintile rise of fat are shown as saturated fat adjusted for non-fat energy intake. p value for trend (smoothed) relative risk.

(Bingham et al. 2003)
Associations between total fat intake (% energy) and breast cancer risk (n=657 cases)

Food Diaries -- $P_{trend} = 0.37$

FFQs -- $P_{trend} = 0.50$

(Key TJ et al. AJCN 2011)
Percent of Energy from Fat and Plasma Triglyceride Level

Mean TG Level

% of Energy from Fat by FFQ

0.195

NHS (n=185)

HPFS (n=269)
Folate deficiency (<3.0 ng/mL)

MTHFR genotype

- ala/ala: 1.00
- ala/val: 1.49
- val/val: 1.33

Odds Ratio

(Ma, J. et al. 1997)