The microbiome and obesity

Vanessa A. Leone, Ph.D.
Instructor

Dietary Modulation of the Microbiome and Cancer Risk

2016 AICR Research Conference – Bethesda, Maryland
Prevalence of “New Age” disorders has increased over the past half century

<table>
<thead>
<tr>
<th>Year</th>
<th>Type 2 Diabetes Prevalence</th>
<th>Obesity Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>No Data</td>
<td><10%</td>
</tr>
<tr>
<td>2000</td>
<td><4.5%</td>
<td>10–13.9%</td>
</tr>
<tr>
<td>2010</td>
<td>4.5%–5.9%</td>
<td><14%</td>
</tr>
<tr>
<td></td>
<td>6.0%–7.4%</td>
<td>14–17.9%</td>
</tr>
<tr>
<td></td>
<td>7.5%–8.9%</td>
<td>18–21.9%</td>
</tr>
<tr>
<td></td>
<td>>9.0%</td>
<td>22.0%–25.9%</td>
</tr>
</tbody>
</table>

Source: Behavioral Risk Factor Surveillance System, CDC
Development of obesity is multi-factorial and complex.
What might be contributing to the increasing prevalence of “Western” disorders?
Diet shapes gut bacteria profiles in humans

- Different dietary intake results in differences in gut bacteria

 - A.) Burkina Faso, Africa
 - Dietary intake, ages 1-6
 - 672.2 – 996.1 kcal/day
 » Protein: 30.9 - 40.2g
 » Fat: 18.9 - 31.2g
 » Carbohydrate: 102.6 – 148.6g

 - B.) European Union, Italy
 - Dietary intake, ages 1-6
 - 1068.7 – 1512.7 kcal/day
 » Protein: 41.9 – 66.7g
 » Fat: 56.1 – 73.9g
 » Carbohydrate: 190.0 – 290.0g

FMT from lean donors improves insulin sensitivity in obese subjects

*Improved symptoms of Type II Diabetes and Metabolic syndrome

Lean male donors
Obese male recipients BMI ≥ 30

Vrieze et al., Gastro. (2012) 143:913-916
Germ-free mice are resistant to diet-induced obesity

Standard environment
+ Microbes

Germ-free environment
- Microbes

Low Fat diet
Lean

High Fat diet
Obese

Low fat or High Fat diet
Lean
Germ-free mice exhibit altered metabolic response to Western diets compared to controls.

Backhed et al, 2004; Backhed et al, 2007
Proposed mechanisms for the role of microbes in diet-induced obesity

Melo Carvalho and Abdalla Saad, Mediators of Inflammation, 2013
Hepatic genes up-regulated in germ-free (GF) vs. conventionalized mice

- Androgen and Estrogen Metabolism
- PXR/RXR Activation
- Methionine Metabolism
- LXR/RXR Activation
- Fatty Acid Metabolism
- Linoleic Acid Metabolism
- Circadian Rhythm Signaling
- Xenobiotic Metabolism Signaling
- Metabolism of Xenobiotics by Cytochrome P450
- Biosynthesis of Steroids
- LPS/IL-1 Mediated Inhibition of RXR Function

Leone, et al., Cell Host & Microbe. 2015
Relationship between circadian clock and nuclear receptors

Leone, et al., Cell Host & Microbe. 2015
Circadian clock networks regulate daily metabolic functions

Circadian clock alterations in some cancers

<table>
<thead>
<tr>
<th></th>
<th>Activators</th>
<th>Repressors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clock KO</td>
<td>Bmal1 KO</td>
</tr>
<tr>
<td>Rhythmic in DD</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Period length</td>
<td>Slightly shorter</td>
<td>Arrhythmic</td>
</tr>
<tr>
<td>Peripheral tissues</td>
<td>Arrhythmic</td>
<td>Arrhythmic</td>
</tr>
<tr>
<td>Body weight</td>
<td>Increased</td>
<td>Reduced</td>
</tr>
</tbody>
</table>

Yu and Weaver, 2011
Circadian clock alterations in some cancers

<table>
<thead>
<tr>
<th>Cancer type</th>
<th>Gene</th>
<th>Modification</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sporadic and familiar breast tumors</td>
<td>Per1, Per2</td>
<td>Decreased expression</td>
<td>Winter et al., 2007</td>
</tr>
<tr>
<td>Endometrial cancer</td>
<td>Per1, Per2, Cry1</td>
<td>CPG methylation</td>
<td>Shih et al., 2006</td>
</tr>
<tr>
<td>Colon cancer</td>
<td>Per2</td>
<td>Downregulation</td>
<td>Faustino et al., 2008; Wood PA, et al., 2009</td>
</tr>
<tr>
<td>Non-Hodgkins lymphoma</td>
<td>Bmal1</td>
<td>CPG hypermethylation</td>
<td>Taniguchi et al., 2009</td>
</tr>
<tr>
<td>Prostate cancer</td>
<td>Bmal1</td>
<td>Decreased expression</td>
<td>Jung-Hynes et al., 2010</td>
</tr>
</tbody>
</table>

Adapted from Savvidis and Koutsilieris. 2012
Hypothesis

Diet-induced gut microbiota provide critical inputs that regulate circadian gene networks, affecting metabolic outcome.

• Do GF mice exhibit altered circadian gene expression patterns on low fat (regular chow) and high fat diets?

• Do gut microbes exhibit diurnal patterns, and are these patterns altered under high-fat feeding conditions?

• If so, how are these patterns regulated?
Germ-free mice are resistant to high fat (HF) diet-induced obesity

Body weight

Caloric consumption

Leone, et al., Cell Host & Microbe. 2015

\(n = 17 \) or \(18 \) age-matched, individually housed male mice/trt group

***\(p<0.001; \) **\(p<0.01; \) *\(p<0.05 \)
Germ-free mice exhibit altered central and peripheral circadian gene expression

Leone, et al., Cell Host & Microbe. 2015

\(n = 2 \) or \(3 \) mice/time point/trt group; Zeitgeber (ZT) 0 = lights on, 6am; ZT12 = lights off, 6pm
High fat diet elicits shifts in gut microbial membership

PCoA: PC1 versus PC2

PC1 – 56.2%

PC2 – 13.9%

HF

RC

HF

RC

Zeitgeber Time (ZT)

= ZT 2

= ZT 6

= ZT 10

= ZT 14

= ZT 18

= ZT 22

Leone, et al., Cell Host & Microbe. 2015

n = 2 or 3 mice/time point/trt group; Zeitgeber (ZT) 0 = lights on, 6am; ZT12 = lights off, 6pm
High fat diet alters diurnal oscillations of specific 16S rRNA operational taxonomic units (OTUs)

Leone, et al., Cell Host & Microbe. 2015

n = 2 or 3 mice/time point/trt group; Zeitgeber (ZT) 0 = lights on, 6am; ZT12 = lights off, 6pm
High fat diet alters diurnal oscillations of gut microbiota function

Leone, et al., Cell Host & Microbe. 2015

$n = 2$ or 3 mice/time point/trt group; Zeitgeber (ZT) 0 = lights on, 6am; ZT12 = lights off, 6pm
High fat diet impacts diurnal patterns of known microbially-produced metabolites

Leone, et al., Cell Host & Microbe. 2015

$n = 2$ or 3 mice/time point/trt group; Zeitgeber (ZT) $0 =$ lights on, 6am; ZT12 = lights off, 6pm
Microbial metabolites elicit a direct impact on hepatic circadian gene expression in vitro

Leone, et al., Cell Host & Microbe. 2015
Butyrate elicits a direct impact on hepatic circadian gene expression in vivo

Leone, et al., Cell Host & Microbe. 2015
Timed butyrate delivery restores liver circadian gene expression and reduces adipose tissue in high fat fed mice

Leone, et al., unpublished data

$n = 4$ mice/trt group
Gut microbes sense dietary cues that translate into outputs that maintain circadian networks.

Dietary intake
- When
- How much
- What

Gut microbiota
- Microbial Oscillations
- Metabolome

Circadian Networks
- Shift work
- Sleep apnea
- Jet lag

- Microbial signals

Examples
- High fat diet

Image source: THE UNIVERSITY OF CHICAGO BIOLOGICAL SCIENCES
High-fat diet induced gut microbiota lack outputs that are required for maintenance of circadian networks.
Acknowledgements

University of Chicago
Dr. Eugene Chang
Dr. Mark Musch
Dr. Brian Prendergast
Dr. Betty Theriault
Dr. Joseph Pierre
Dr. Candace Cham
Dr. Aaron Dinner
Dr. Kristina Martinez
Dr. Edmond Huang
Dr. Yong Huang
Dr. Sean Gibbons
Dr. Anuradha Nadimpalli

UW-Madison
Dr. Kenneth Kudsk
Dr. Aaron Heneghan

Argonne National Lab
Dr. Jack Gilbert

Funding
NIDDK P30
NIDDK DDRCC
Gastro-intestinal Research Foundation (GIRF)

Sunrise from the Knapp Center for Biomedical Discovery after a long circadian study

The microbiome and obesity 27